Prescription Drug Information: Atovaquone (Page 2 of 5)

6.2 Postmarketing Experience

The following adverse reactions have been identified during post-approval use of atovaquone oral suspension. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure.

Blood and Lymphatic System Disorders
Methemoglobinemia, thrombocytopenia.

Immune System Disorders
Hypersensitivity reactions including angioedema, bronchospasm, throat tightness, and urticaria.

Eye Disorders
Vortex keratopathy.

Gastrointestinal Disorders
Pancreatitis.

Hepatobiliary Disorders
Hepatitis, fatal liver failure.

Skin and Subcutaneous Tissue Disorders
Erythema multiforme, Stevens-Johnson syndrome, and skin desquamation.

Renal and Urinary Disorders
Acute renal impairment.

7 DRUG INTERACTIONS

7.1 Rifampin/Rifabutin

Concomitant administration of rifampin or rifabutin and atovaquone oral suspension is known to reduce atovaquone concentrations [see Clinical Pharmacology (12.3)]. Concomitant administration of atovaquone oral suspension and rifampin or rifabutin is not recommended.

7.2 Tetracycline

Concomitant administration of tetracycline and atovaquone oral suspension has been associated with a reduction in plasma concentrations of atovaquone [see Clinical Pharmacology (12.3)]. Caution should be used when prescribing tetracycline concomitantly with atovaquone oral suspension. Monitor patients for potential loss of efficacy of atovaquone if coadministration is necessary.

7.3 Metoclopramide

Metoclopramide may reduce the bioavailability of atovaquone and should be used only if other antiemetics are not available [see Clinical Pharmacology (12.3)].

7.4 Indinavir

Concomitant administration of atovaquone and indinavir did not result in any change in the steady-state AUC and Cmax of indinavir but resulted in a decrease in the Ctrough of indinavir [see Clinical Pharmacology (12.3)]. Caution should be exercised when prescribing atovaquone oral suspension with indinavir due to the decrease in trough concentrations of indinavir. Monitor patients for potential loss of efficacy of indinavir if coadministration with atovaquone oral suspension is necessary.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Available data from postmarketing experience with use of atovaquone in pregnant women are insufficient to identify a drug-associated risk for major birth defects, miscarriage, or adverse maternal or fetal outcomes. Pregnant women with HIV who are infected with PCP are at increased risk of adverse pregnancy outcomes (see Clinical Considerations). Atovaquone given orally by gavage to pregnant rats and rabbits during organogenesis did not cause fetal malformations at plasma concentrations up to 3 times and 0.5 times, respectively, the estimated human exposure based on steady-state plasma concentrations (see Data).

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. All pregnancies have a background risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.

Clinical Considerations

Disease-Associated Maternal and/or Embryo/Fetal Risk: Pregnant women with HIV who are infected with PCP are at increased risk of severe illness and maternal death associated with PCP compared with non-pregnant women.

Data

Animal Data: Atovaquone administered in oral doses of 250, 500, and 1,000 mg/kg/day to pregnant rats during organogenesis (Gestation Day [GD] 6 to GD15) did not cause maternal or embryo-fetal toxicity at doses up to 1,000 mg/kg/day corresponding to maternal plasma concentrations approximately 3 times the estimated human exposure during the treatment of PCP based on steady-state plasma concentrations. In pregnant rabbits, atovaquone administered in oral doses of 300, 600, and 1,200 mg/kg/day during organogenesis (GD6 to GD18) caused decreased fetal body length at a maternally toxic dose of 1,200 mg/kg/day corresponding to a plasma concentration that is approximately 0.5 times the estimated human exposure based on steady-state plasma concentrations. In a pre- and post-natal study in rats, atovaquone administered in oral doses of 250, 500, and 1,000 mg/kg/day from GD15 until Lactation Day (LD) 20 did not impair the growth or developmental effects in first generation offspring at doses up to 1,000 mg/kg/day corresponding to approximately 3 times the estimated human exposure based on steady-state plasma concentrations during the treatment of PCP. Atovaquone crossed the placenta and was present in fetal rat and rabbit tissue.

8.2 Lactation

Risk Summary

The Centers for Disease Control and Prevention recommend that HIV-1 infected mothers not breastfeed their infants to avoid risking postnatal transmission of HIV-1. There are no data on the presence of atovaquone in human milk, the effects on the breastfed child, or the effects on milk production. Atovaquone was detected in rat milk when lactating rats were administered oral atovaquone (see Data). When a drug is present in animal milk, it is likely the drug will be present in human milk. Because of the potential for HIV-1 transmission to HIV-negative infants, instruct mothers with HIV-1 not to breastfeed if they are taking atovaquone oral suspension for the prevention or treatment of PCP.

Data

In a rat study with doses of 10 and 250 mg/kg given orally by gavage on postpartum Day 11, atovaquone concentrations in the milk were 30% of the concurrent atovaquone concentrations in the maternal plasma at both doses. The concentration of drug in animal milk does not necessarily predict the concentration of drug in human milk.

8.4 Pediatric Use

Evidence of safety and effectiveness in pediatric patients (aged 12 years and younger) has not been established. In a trial of atovaquone oral suspension administered once daily with food for 12 days to 27 HIV-1-infected, asymptomatic infants and children aged between 1 month and 13 years, the pharmacokinetics of atovaquone were age-dependent. The average steady-state plasma atovaquone concentrations in the 24 subjects with available concentration data are shown in Table 5.

Table 5. Average Steady-state Plasma Atovaquone Concentrations in Pediatric Subjects

Age

Dose of Atovaquone Oral Suspension

10 mg/kg

30 mg/kg

45 mg/kg

Average Css in mcg/mL (mean ± SD)

1 to 3 months

5.9

(n = 1)

27.8 ± 5.8

(n = 4)

_

>3 to 24 months

5.7 ± 5.1

(n = 4)

9.8 ± 3.2

(n = 4)

15.4 ± 6.6

(n = 4)

>2 to 13 years

16.8 ± 6.4

(n = 4)

37.1 ± 10.9

(n = 3)

_

Css = Concentration at steady state.

8.5 Geriatric Use

Clinical trials of atovaquone did not include sufficient numbers of subjects aged 65 years and older to determine whether they respond differently from younger subjects.

10 OVERDOSAGE

Overdoses up to 31,500 mg of atovaquone have been reported. In one such patient who also took an unspecified dose of dapsone, methemoglobinemia occurred. Rash has also been reported after overdose. There is no known antidote for atovaquone, and it is currently unknown if atovaquone is dialyzable.

11 DESCRIPTION

Atovaquone Oral Suspension, USP is a quinone antimicrobial drug. The chemical name of atovaquone USP is trans -2-[4-(4-chlorophenyl) cyclohexyl]-3-hydroxy-1,4-naphthalenedione. Atovaquone USP is a yellow crystalline powder that is freely soluble in N-methyl-2-pyrrolidone and in tetrahydrofuran; soluble in chloroform; sparingly soluble in acetone and dimethyl sulfoxide; slightly soluble in octanol, ethyl acetate and polyethylene glycol 200; very slightly soluble in 0.1N sodium hydroxide; insoluble in water. It has a molecular weight of 366.84 g/mol and the molecular formula C22 H19 ClO3 . The compound has the following structural formula:

structure
(click image for full-size original)

Atovaquone Oral Suspension, USP is a formulation of micro-fine particles of atovaquone USP.

Each 5 mL of Atovaquone Oral Suspension, USP contains 750 mg of atovaquone USP and the inactive ingredients benzyl alcohol, citric acid monohydrate, hypromellose, poloxamer 188, purified water, saccharin sodium, trisodium citrate dihydrate, tutti frutti flavor and xanthan gum.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Atovaquone is a quinone antimicrobial drug [see Microbiology (12.4)].

12.2 Pharmacodynamics

Relationship between Plasma Atovaquone Concentrations and Clinical Outcome

In a comparative clinical trial, HIV/AIDS subjects received atovaquone tablets 750 mg 3 times daily or TMP-SMX for treatment of mild-to-moderate PCP for 21 days [see Clinical Studies (14.2)]; the relationship between atovaquone plasma concentrations and successful treatment outcome from 113 of these subjects for whom both steady-state drug concentrations and outcome data were available is shown in Table 6.

Table 6. Relationship between Plasma Atovaquone Concentrations and Successful Treatment Outcome

Steady-State Plasma Atovaquone Concentrations
(mcg/mL)

Successful Treatmenta No. of Successes/ No. in Group
(%)

0 to <5

0/6 (0%)

5 to <10

18/26 (69%)

10 to <15

30/38 (79%)

15 to <20

18/19 (95%)

≥20

24/24 (100%)

a Successful treatment outcome was defined as improvement in clinical and respiratory measures persisting at least 4 weeks after cessation of therapy. Improvement in clinical and respiratory measures was assessed using a composite of parameters that included oral body temperature, respiratory rate, and severity scores for cough, dyspnea, and chest pain/tightness.

Cardiac Effects

The effect of atovaquone oral suspension on the QT interval is unknown in humans.

RxDrugLabels.com provides trustworthy package insert and label information about marketed prescription drugs as submitted by manufacturers to the U.S. Food and Drug Administration. Package information is not reviewed or updated separately by RxDrugLabels.com. Every individual prescription drug label and package insert entry contains a unique identifier which can be used to secure further details directly from the U.S. National Institutes of Health and/or the FDA.

As a leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. RxDrugLabels.com provides the full prescription-only subset of the FDA's repository. Medication information provided here is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2024. All Rights Reserved.