Prescription Drug Information: Fenofibric Acid Delayed-Release (Page 3 of 5)

6.2 Postmarketing Experience

The following adverse reactions have been identified during postapproval use of fenofibrate. Because these reactions are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure: rhabdomyolysis, pancreatitis, renal failure, muscle spasms, acute renal failure, hepatitis, cirrhosis, increased total bilirubin, anemia, asthenia, severely depressed HDL-cholesterol levels, and interstitial lung disease. Photosensitivity reactions to fenofibrate have occurred days to months after initiation; in some of these cases, patients reported a prior photosensitivity reaction to ketoprofen.

7 DRUG INTERACTIONS

7.1 Coumarin Anticoagulants

Potentiation of coumarin-type anticoagulant effect has been observed with prolongation of the PT/INR.

Caution should be exercised when oral coumarin anticoagulants are given in conjunction with fenofibric acid delayed-release capsules. The dosage of the anticoagulant should be reduced to maintain the PT/INR at the desired level to prevent bleeding complications. Frequent PT/INR determinations are advisable until it has been definitely determined that the PT/INR has stabilized [see Warnings and Precautions (5.6)].

7.2 Bile Acid Binding Resins

Since bile acid binding resins may bind other drugs given concurrently, patients should take fenofibric acid delayed-release capsules at least 1 hour before or 4 to 6 hours after a bile acid resin to avoid impeding its absorption.

7.3 Immunosuppressants

Immunosuppressants such as cyclosporine and tacrolimus can produce nephrotoxicity with decreases in creatinine clearance and rises in serum creatinine, and because renal excretion is the primary elimination route of drugs of the fibrate class including fenofibric acid delayed-release capsules, there is a risk that an interaction will lead to deterioration of renal function. The benefits and risks of using fenofibric acid delayed-release capsules with immunosuppressants and other potentially nephrotoxic agents should be carefully considered, and the lowest effective dose employed.

7.4 Colchicine

Cases of myopathy, including rhabdomyolysis, have been reported with fenofibrates co-administered with colchicine, and caution should be exercised when prescribing fenofibrate with colchicine.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Risk Summary

Limited available data with fenofibrate use in pregnant women are insufficient to determine a drug associated risk of major birth defects, miscarriage or adverse maternal or fetal outcomes. In animal reproduction studies, no evidence of embryo-fetal toxicity was observed with oral administration of fenofibrate in rats and rabbits during organogenesis at doses less than or equivalent to the maximum recommended clinical dose of 135 mg daily, based on body surface area (mg/m2). Adverse reproductive outcomes occurred at higher doses in the presence of maternal toxicity (see Data). Fenofibric acid delayed-release capsules should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

The estimated background risk of major birth defects and miscarriage for the indicated population is unknown. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively.

Data

Animal Data

In pregnant rats given oral dietary doses of 14, 127, and 361 mg/kg/day from gestation day 6-15 during the period of organogenesis, no adverse developmental findings were observed at 14 mg/kg/day (less than the clinical exposure at the maximum recommended human dose [MRHD] of 300 mg fenofibrate daily, equivalent to 135 mg fenofibric acid delayed-release capsules daily, based on body surface area comparisons). Increased fetal skeletal malformations were observed at maternally toxic doses (361 mg/kg/day, corresponding to 12 times the clinical exposure at the MRHD) that significantly suppressed maternal body weight gain.

In pregnant rabbits given oral gavage doses of 15, 150, and 300 mg/kg/day from gestation day 618 during the period of organogenesis and allowed to deliver, no adverse developmental findings were observed at 15 mg/kg/day (a dose that approximates the clinical exposure at the MRHD, based on body surface area comparisons). Aborted litters were observed at maternally toxic doses (≥ 150 mg/kg/day, corresponding to ≥ 10 times the clinical exposure at the MRHD) that suppressed maternal body weight gain.

In pregnant rats given oral dietary doses of 15, 75, and 300 mg/kg/day from gestation day 15 through lactation day 21 (weaning), no adverse developmental effects were observed at 15 mg/kg/day (less than the clinical exposure at the MRHD, based on body surface area comparisons), despite maternal toxicity (decreased weight gain). Post-implantation loss was observed at ≥ 75 mg/kg/day (≥ 2 times the clinical exposure at the MRHD) in the presence of maternal toxicity (decreased weight gain). Decreased pup survival was noted at 300 mg/kg/day (10 times the clinical exposure at the MRHD), which was associated with decreased maternal body weight gain/maternal neglect.

8.2 Lactation

Risk Summary

There is no available information on the presence of fenofibrate in human milk, effects of the drug on the breastfed infant, or the effects on milk production. Fenofibrate is present in the milk of rats, and is therefore likely to be present in human milk. Because of the potential for serious adverse reactions in breastfed infants, such as disruption of infant lipid metabolism, women should not breastfeed during treatment with fenofibric acid delayed-release capsules and for 5 days after the final dose [see Contraindications (4)].

8.4 Pediatric Use

The safety and effectiveness of fenofibric acid delayed-release capsules in pediatric patients have not been established.

8.5 Geriatric Use

Fenofibric acid delayed-release capsules are substantially excreted by the kidney as fenofibric acid and fenofibric acid glucuronide, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. Fenofibric acid exposure is not influenced by age. Since elderly patients have a higher incidence of renal impairment, dose selection for the elderly should be made on the basis of renal function [see Dosage and Administration (2.5) and Clinical Pharmacology (12.3) ]. Elderly patients with normal renal function should require no dose modifications. Consider monitoring renal function in elderly patients taking fenofibric acid delayed-release capsules.

8.6 Renal Impairment

The use of fenofibric acid delayed-release capsules should be avoided in patients who have severe renal impairment [see Contraindications (4) ]. Dose reduction is required in patients with mild to moderate renal impairment [see Dosage and Administration (2.4) and Clinical Pharmacology (12.3)]. Monitoring renal function in patients with renal impairment is recommended.

8.7 Hepatic Impairment

The use of fenofibric acid delayed-release capsules has not been evaluated in subjects with hepatic impairment [see Contraindications (4) and Clinical Pharmacology (12.3)].

10 OVERDOSAGE

There is no specific treatment for overdose with fenofibric acid delayed-release capsules. General supportive care of the patient is indicated, including monitoring of vital signs and observation of clinical status, should an overdose occur. If indicated, elimination of unabsorbed drug should be achieved by emesis or gastric lavage; usual precautions should be observed to maintain the airway. Because fenofibric acid delayed-release capsules are highly bound to plasma proteins, hemodialysis should not be considered.

11 DESCRIPTION

Fenofibric acid delayed-release capsules are lipid regulating agent available as delayed release capsules for oral administration. Each delayed release capsule contains choline fenofibrate, equivalent to 45 mg or 135 mg of fenofibric acid. The chemical name for choline fenofibrate is ethanaminium, 2-hydroxy-N,N,N-trimethyl, 2-{4-(4-chlorobenzoyl)phenoxy] -2-methylpropanoate (1:1) with the following structural formula:

molecular-structure
(click image for full-size original)

The empirical formula is C22 H28 ClNO5 and the molecular weight is 421.91. Choline fenofibrate is freely soluble in water. The melting point is approximately 210°C. Choline fenofibrate is a white to yellow powder, which is stable under ordinary conditions.

Each delayed release capsule contains enteric coated mini-tablets comprised of choline fenofibrate and the following inactive ingredients: hypromellose, hydroxylpropyl cellulose, lactose monohydrate, magnesium stearate, methacrylic acid copolymer, silicon dioxide, talc, triethyl citrate. The capsule shell of the 45 mg capsule contains the following inactive ingredients: ammonia, gelatin, propylene glycol, shellac, sodium lauryl sulfate, titanium dioxide, black iron oxide, red iron oxide and yellow iron oxide. The capsule shell of the 135 mg capsule contains the following inactive ingredients: ammonia, gelatin, propylene glycol, shellac, sodium lauryl sulfate, titanium dioxide, black iron oxide and yellow iron oxide FD&C Red No. 40 and FD&C Blue No. 1.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

The active moiety of fenofibric acid delayed-release capsules is fenofibric acid. The pharmacological effects of fenofibric acid in both animals and humans have been extensively studied through oral administration of fenofibrate.

The lipid-modifying effects of fenofibric acid seen in clinical practice have been explained in vivo in transgenic mice and in vitro in human hepatocyte cultures by the activation of peroxisome proliferator activated receptor α (PPARα). Through this mechanism, fenofibric acid increases lipolysis and elimination of triglyceride-rich particles from plasma by activating lipoprotein lipase and reducing production of Apo CIII (an inhibitor of lipoprotein lipase activity).

Activation of PPARα also induces an increase in the synthesis of HDL-C and Apo AI and AII.

12.3 Pharmacokinetics

Fenofibric acid delayed-release capsules contain fenofibric acid, which is the only circulating pharmacologically active moiety in plasma after oral administration of fenofibric acid delayed-release capsules. Fenofibric acid is also the circulating pharmacologically active moiety in plasma after oral administration of fenofibrate, the ester of fenofibric acid.

Plasma concentrations of fenofibric acid after administration of one 135 mg fenofibric acid delayed-release capsule are equivalent to those after one 200 mg capsule of micronized fenofibrate administered under fed conditions.

Absorption

Fenofibric acid is well absorbed throughout the gastrointestinal tract. The absolute bioavailability of fenofibric acid is approximately 81%.

Peak plasma levels of fenofibric acid occur within 4 to 5 hours after a single dose administration of fenofibric acid delayed-release capsules under fasting conditions.

Fenofibric acid exposure in plasma, as measured by Cmax and AUC, is not significantly different when a single 135 mg dose of fenofibric acid delayed-release capsules is administered under fasting or nonfasting conditions.

Distribution

Upon multiple dosing of fenofibric acid delayed-release capsules, fenofibric acid levels reach steady state within 8 days. Plasma concentrations of fenofibric acid at steady state are approximately slightly more than double those following a single dose. Serum protein binding is approximately 99% in normal and dyslipidemic subjects.

Metabolism

Fenofibric acid is primarily conjugated with glucuronic acid and then excreted in urine. A small amount of fenofibric acid is reduced at the carbonyl moiety to a benzhydrol metabolite which is, in turn, conjugated with glucuronic acid and excreted in urine.

In vivo metabolism data after fenofibrate administration indicate that fenofibric acid does not undergo oxidative metabolism (e.g., cytochrome P450) to a significant extent.

Elimination

After absorption, fenofibric acid delayed-release capsules are primarily excreted in the urine in the form of fenofibric acid and fenofibric acid glucuronide.

Fenofibric acid is eliminated with a half-life of approximately 20 hours, allowing once daily administration of fenofibric acid delayed-release capsules.

Specific Populations

Geriatrics

In five elderly volunteers 77 to 87 years of age, the oral clearance of fenofibric acid following a single oral dose of fenofibrate was 1.2 L/h, which compares to 1.1 L/h in young adults. This indicates that an equivalent dose of fenofibric acid delayed-release capsules can be used in elderly subjects with normal renal function, without increasing accumulation of the drug or metabolites [see Use in Specific Populations (8.5)].

Pediatrics

The pharmacokinetics of fenofibric acid delayed-release capsules has not been studied in pediatric populations.

Gender

No pharmacokinetic difference between males and females has been observed for fenofibric acid delayed-release capsules.

Race

The influence of race on the pharmacokinetics of fenofibric acid delayed-release capsules has not been studied; however, fenofibric acid is not metabolized by enzymes known for exhibiting inter-ethnic variability.

Renal Impairment

The pharmacokinetics of fenofibric acid was examined in patients with mild, moderate, and severe renal impairment. Patients with severe renal impairment (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m2) showed a 2.7-fold increase in exposure for fenofibric acid and increased accumulation of fenofibric acid during chronic dosing compared to that of healthy subjects. Patients with mild to moderate renal impairment (eGFR 30-59 mL/min/1.73 m2) had similar exposure but an increase in the half-life for fenofibric acid compared to that of healthy subjects. Based on these findings, the use of fenofibric acid delayed-release capsules should be avoided in patients who have severe renal impairment and dose reduction is required in patients having mild to moderate renal impairment [see Dosage and Administration (2.4)].

Hepatic Impairment

No pharmacokinetic studies have been conducted in patients with hepatic impairment.

Drug-drug Interactions

In vitro studies using human liver microsomes indicate that fenofibric acid is not an inhibitor of cytochrome (CYP) P450 isoforms CYP3A4, CYP2D6, CYP2E1, or CYP1A2. It is a weak inhibitor of CYP2C8, CYP2C19, and CYP2A6, and mild-to-moderate inhibitor of CYP2C9 at therapeutic concentrations.

Comparison of atorvastatin exposures when atorvastatin (80 mg once daily for 10 days) is given in combination with fenofibric acid (fenofibric acid delayed-release capsules 135 mg once daily for 10 days) and ezetimibe (10 mg once daily for 10 days) versus when atorvastatin is given in combination with ezetimibe only (ezetimibe 10 mg once daily and atorvastatin, 80 mg once daily for 10 days): The Cmax decreased by 1% for atorvastatin and ortho-hydroxy-atorvastatin and increased by 2% for parahydroxy-atorvastatin. The AUC decreased 6% and 9% for atorvastatin and orthohydroxy-atorvastatin, respectively, and did not change for para-hydroxy-atorvastatin.

Comparison of ezetimibe exposures when ezetimibe (10 mg once daily for 10 days) is given in combination with fenofibric acid (fenofibric acid delayed-release capsules 135 mg once daily for 10 days) and atorvastatin (80 mg once daily for 10 days) versus when ezetimibe is given in combination with atorvastatin only (ezetimibe 10 mg once daily and atorvastatin, 80 mg once daily for 10 days): The Cmax increased by 26% and 7% for total and free ezetimibe, respectively. The AUC increased by 27% and 12% for total and free ezetimibe, respectively.

Table 2 describes the effects of co-administered drugs on fenofibric acid systemic exposure.

Table 3 describes the effects of co-administered fenofibric acid on other drugs.

Table 2. Effects of Coadministered Drugs on Fenofibric Acid Systemic Exposure from Fenofibric Acid Delayed-Release Capsules or Fenofibrate Administration
1 TriCor® (fenofibrate) oral tablet2 TriCor® (fenofibrate) oral micronized capsule

Co-Administered Drug

Dosage Regimen of Co-Administered Drug

Dosage Regiment ofFenofibric Acid Delayed-Release Capsules or Fenofibrate

Changes in Fenofibric Acid Exposure

AUC

Cmax

Lipid-lowering agents

Rosuvastatin

40 mg once daily for 10 days

Fenofibric Acid Delayed-Release Capsules135 mg once daily for 10 days

↓2%

↓2%

Atorvastatin

20 mg once daily for 10 days

Fenofibrate 160 mg1 once daily for 10 days

↓2%

↓4%

Atorvastatin + ezetimibe

Atorvastatin, 80 mg once daily and ezetimibe, 10 mg once daily for 10 days

Fenofibric Acid Delayed-Release Capsules 135 mg once daily for 10 days

↑5%

↑5%

Pravastatin

40 mg as a single dose

Fenofibrate 3 x 67 mg2 as a single dose

↓1%

↓2%

Fluvastatin

40 mg as a single dose

Fenofibrate 160 mg1 as a single dose

↓2%

↓10%

Simvastatin

80 mg once daily for 7 days

Fenofibrate 160 mg1 once daily for 7 days

↓5%

↓11%

Anti-diabetic agents

Glimepiride

1 mg as a single dose

Fenofibrate 145 mg1 once daily for 10 days

↑1%

↓1%

Metformin

850 mg 3 times daily for 10 days

Fenofibrate 54 mg1 3 times daily for 10 days

↓9%

↓6%

Rosiglitazone

8 mg once daily for 5 days

Fenofibrate 145 mg1 once daily for 14 days

↑10%

↑3%

Gastrointestinal agents

Omeprazole

40 mg once daily for 5 days

Fenofibric Acid Delayed-Release Capsules 135 mg as a single dose fasting

↑6%

↑17%

Omeprazole

40 mg once daily for 5 days

Fenofibric Acid Delayed-Release Capsules 135 mg as a single dose with food

↑4%

↓2%

Table 3. Effects of Fenofibric Acid Delayed-Release Capsules or Fenofibrate Co-Administration on Systemic Exposure of Other Drugs
1 TriCor® (fenofibrate) oral tablet2 TriCor® (fenofibrate) oral micronized capsule

Dosage Regimen of Fenofibric Acid Delayed-Release Capsules or Fenofibrate

Dosage Regimen of Co-Administered Drug

Change in Coadministered Drug Exposure

Analyte

AUC

Cmax

Lipid-lowering agents

Fenofibric Acid Delayed-Release Capsules 135 mg once daily for 10 days

Rosuvastatin, 40 mg once daily for 10 days

Rosuvastatin

↑6%

↑20%

Fenofibrate 160 mg1 once daily for 10 days

Atorvastatin, 20 mg once daily for 10 days

Atorvastatin

↓17%

0%

Fenofibrate 3 x 67 mg2 as a single dose

Pravastatin, 40 mg as a single dose

Pravastatin

↑13%

↑13%

3α-Hydroxyl-iso-pravastatin

↑26%

↑29%

Fenofibrate 160 mg1 as a single dose

Fluvastatin, 40 mg as a single dose

(+)-3R, 5S-Fluvastatin

↑15%

↑16%

Fenofibrate 160 mg1 once daily for 7 days

Simvastatin, 80 mg once daily for 7 days

Simvastatin acid

↓36%

↓11%

Simvastatin

↓11%

↓17%

Active HMG-CoA Inhibitors

↓12%

↓1%

Total HMG-CoA Inhibitors

↓8%

↓10%

Anti-diabetic agents

Fenofibrate 145 mg1 once daily for 10 days

Glimepiride,1 mg as a single dose

Glimepiride

↑35%

↑18%

Fenofibrate 54 mg1 3 times daily for 10 days

Metformin, 850 mg 3 times daily for 10 days

Metformin

↑3%

↑6%

Fenofibrate 145 mg1 once daily for 14 days

Rosiglitazone, 8 mg once daily for 5 days

Rosiglitazone

↑6%

↓1%

RxDrugLabels.com provides trustworthy package insert and label information about marketed prescription drugs as submitted by manufacturers to the U.S. Food and Drug Administration. Package information is not reviewed or updated separately by RxDrugLabels.com. Every individual prescription drug label and package insert entry contains a unique identifier which can be used to secure further details directly from the U.S. National Institutes of Health and/or the FDA.

As a leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. RxDrugLabels.com provides the full prescription-only subset of the FDA's repository. Medication information provided here is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2024. All Rights Reserved.