Prescription Drug Information: Macrodantin

MACRODANTIN- nitrofurantoin, macrocrystalline capsule
Procter & Gamble Pharmaceuticals

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Macrodantin and other antibacterial drugs, Macrodantin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

DESCRIPTION:

Macrodantin (nitrofurantoin macrocrystals) is a synthetic chemical of controlled crystal size. It is a stable, yellow, crystalline compound. Macrodantin is an antibacterial agent for specific urinary tract infections. It is available in 25 mg, 50 mg, and 100 mg capsules for oral administration.

Image from Drug Label Content
(click image for full-size original)

Inactive Ingredients: Each capsule contains edible black ink, gelatin, lactose, starch, talc, titanium dioxide, and may contain FD&C Yellow No. 6 and D&C Yellow No. 10.

CLINICAL PHARMACOLOGY:

Macrodantin is a larger crystal form of Furadantin ® (nitrofurantoin). The absorption of Macrodantin is slower and its excretion somewhat less when compared to Furadantin. Blood concentrations at therapeutic dosage are usually low. It is highly soluble in urine, to which it may impart a brown color.

Following a dose regimen of 100 mg q.i.d. for 7 days, average urinary drug recoveries (0-24 hours) on day 1 and day 7 were 37.9% and 35.0%.

Unlike many drugs, the presence of food or agents delaying gastric emptying can increase the bioavailability of Macrodantin , presumably by allowing better dissolution in gastric juices.

Microbiology: Nitrofurantoin is bactericidal in urine at therapeutic doses. The mechanism of the antimicrobial action of nitrofurantoin is unusual among antibacterials. Nitrofurantoin is reduced by bacterial flavoproteins to reactive intermediates which inactivate or alter bacterial ribosomal proteins and other macromolecules. As a result of such inactivations, the vital biochemical processes of protein synthesis, aerobic energy metabolism, DNA synthesis, RNA synthesis, and cell wall synthesis are inhibited. The broad-based nature of this mode of action may explain the lack of acquired bacterial resistance to nitrofurantoin, as the necessary multiple and simultaneous mutations of the target macromolecules would likely be lethal to the bacteria. Development of resistance to nitrofurantoin has not been a significant problem since its introduction in 1953. Cross-resistance with antibiotics and sulfonamides has not been observed, and transferable resistance is, at most, a very rare phenomenon.

Nitrofurantoin, in the form of Macrodantin , has been shown to be active against most strains of the following bacteria both in vitro and in clinical infections (see INDICATIONS AND USAGE):

Gram-Positive Aerobes
Staphylococcus aureus
Enterococci (e.g., Enterococcus faecalis)
Gram-Negative Aerobes
Escherichia coli

NOTE: Some strains of Enterobacter species and Klebsiella species are resistant to nitrofurantoin.

Nitrofurantoin also demonstrates in vitro activity against the following microorganisms, although the clinical significance of these data with respect to treatment with Macrodantin is unknown:

Gram-Positive Aerobes
Coagulase-negative staphylococci
(including Staphylococcus epidermidis and
Staphylococcus saprophyticus
)
Streptococcus agalactiae
Group D streptococci
Viridans group streptococci
Gram-Negative Aerobes
Citrobacter amalonaticus
Citrobacter diversus
Citrobacter freundii
Klebsiella oxytoca
Klebsiella ozaenae

Nitrofurantoin is not active against most strains of Proteus species or Serratia species. It has no activity against Pseudomonas species.

Antagonism has been demonstrated in vitro between nitrofurantoin and quinolone antimicrobial agents. The clinical significance of this finding is unknown.

Susceptibility Tests:

Dilution techniques:

Quantitative methods are used to determine antimicrobial minimal inhibitory concentrations (MIC’s). These MIC’s provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC’s should be determined using a standardized procedure. Standardized procedures are based on a dilution method1 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of nitrofurantoin powder. The MIC values should be interpreted according to the following criteria:

MIC (μg/mL) Interpretation
≤ 32 Susceptible (S)
64 Intermediate (I)
≥ 128 Resistant (R)

A report of “Susceptible” indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the urine reaches the concentrations usually achievable. A report of “Intermediate” indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of “Resistant” indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the urine reaches the concentrations usually achievable; other therapy should be selected.

Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard nitrofurantoin powder should provide the following MIC values:

Microorganism MIC (μg/mL)
E. coli ATCC 25922 4-16
S. aureus ATCC 29213 8-32
E. faecalis ATCC 29212 4-16

Diffusion techniques:

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 300 μg nitrofurantoin to test the susceptibility of microorganisms to nitrofurantoin.

Reports from the laboratory providing results of the standard single-disk susceptibility test with a 300 μg nitrofurantoin disk should be interpreted according to the following criteria:

Zone Diameter (mm) Interpretation
≥ 17 Susceptible (S)
15-16 Intermediate (I)
≤ 14 Resistant (R)

Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for nitrofurantoin.

As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 300 μg nitrofurantoin disk should provide the following zone diameters in these laboratory test quality control strains:

Microorganism Zone Diameter (mm)
E. coli ATCC 25922 20-25
S. aureus ATCC 25923 18-22

INDICATIONS AND USAGE:

Macrodantin is specifically indicated for the treatment of urinary tract infections when due to susceptible strains of Escherichia coli, enterococci, Staphylococcus aureus , and certain susceptible strains of Klebsiella and Enterobacter species.

Nitrofurantoin is not indicated for the treatment of pyelonephritis or perinephric abscesses.

To reduce the development of drug-resistant bacteria and maintain the effectiveness of Macrodantin and other antibacterial drugs, Macrodantin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

Nitrofurantoins lack the broader tissue distribution of other therapeutic agents approved for urinary tract infections. Consequently, many patients who are treated with Macrodantin are predisposed to persistence or reappearance of bacteriuria. Urine specimens for culture and susceptibility testing should be obtained before and after completion of therapy. If persistence or reappearance of bacteriuria occurs after treatment with Macrodantin , other therapeutic agents with broader tissue distribution should be selected. In considering the use of Macrodantin , lower eradication rates should be balanced against the increased potential for systemic toxicity and for the development of antimicrobial resistance when agents with broader tissue distribution are utilized.

CONTRAINDICATIONS:

Anuria, oliguria, or significant impairment of renal function (creatinine clearance under 60 mL per minute or clinically significant elevated serum creatinine) are contraindications. Treatment of this type of patient carries an increased risk of toxicity because of impaired excretion of the drug.

Because of the possibility of hemolytic anemia due to immature erythrocyte enzyme systems (glutathione instability), the drug is contraindicated in pregnant patients at term (38-42 weeks’ gestation), during labor and delivery, or when the onset of labor is imminent. For the same reason, the drug is contraindicated in neonates under one month of age.

Macrodantin is contraindicated in patients with a previous history of cholestatic jaundice/hepatic dysfunction associated with nitrofurantoin.

Macrodantin is also contraindicated in those patients with known hypersensitivity to nitrofurantoin.

Page 1 of 3 1 2 3

RxDrugLabels.com provides trustworthy package insert and label information about marketed prescription drugs as submitted by manufacturers to the U.S. Food and Drug Administration. Package information is not reviewed or updated separately by RxDrugLabels.com. Every individual prescription drug label and package insert entry contains a unique identifier which can be used to secure further details directly from the U.S. National Institutes of Health and/or the FDA.

As a leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. RxDrugLabels.com provides the full prescription-only subset of the FDA's repository. Medication information provided here is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2024. All Rights Reserved.