Prescription Drug Information: Rifabutin

RIFABUTIN — rifabutin capsule
Lupin Pharmaceuticals, Inc.

DESCRIPTION

Rifabutin Capsules USP for oral administration contain 150 mg of the rifamycin antimycobacterial agent rifabutin, USP, per capsule, along with the inactive ingredients crospovidone, gelatin, iron oxide red, magnesium stearate, microcrystalline cellulose, potassium hydroxide, shellac, silicon dioxide, sodium lauryl sulphate, and titanium dioxide.

The chemical name for rifabutin is 1′,4-didehydro-1-deoxy-1,4-dihydro-5′-(2-methylpropyl)-1-oxorifamycin XIV (Chemical Abstracts Service, 9th Collective Index) or (9S , 12E , 14S , 15R , 16S , 17R , 18R , 19R , 20S , 21S , 22E , 24Z)-6,16,18,20-tetrahydroxy-1′-isobutyl-14-methoxy-7,9,15,17,19,21,25-heptamethyl-spiro [9,4-(epoxypentadeca[1,11,13]trienimino)-2H- furo[2′,3′:7,8] naphth[1,2-d]imidazole-2,4′-piperidine]-5,10,26-(3H ,9H)-trione-16-acetate. Rifabutin has a molecular formula of C46 H62 N4 O11 , a molecular weight of 847.02 and the following structure:

Rifabutin USP
(click image for full-size original)

Rifabutin USP

Rifabutin is a red-violet powder soluble in chloroform and methanol, sparingly soluble in ethanol, and very slightly soluble in water (0.19 mg/mL). Its log P value (the base 10 logarithm of the partition coefficient between n-octanol and water) is 3.2 (n-octanol/water).

CLINICAL PHARMACOLOGY

Pharmacokinetics

Absorption

Following a single oral dose of 300 mg to nine healthy adult volunteers, rifabutin was readily absorbed from the gastrointestinal tract with mean (±SD) peak plasma levels (Cmax ) of 375 (±267) ng/mL (range: 141 to 1033 ng/mL) attained in 3.3 (±0.9) hours (Tmax range: 2 to 4 hours). Absolute bioavailability assessed in five HIV-positive patients, who received both oral and intravenous doses, averaged 20%. Total recovery of radioactivity in the urine indicates that at least 53% of the orally administered rifabutin dose is absorbed from the gastrointestinal tract. The bioavailability of rifabutin from the capsule dosage form, relative to an oral solution, was 85% in 12 healthy adult volunteers. High-fat meals slow the rate without influencing the extent of absorption from the capsule dosage form. Plasma concentrations post-Cmax declined in an apparent biphasic manner. Pharmacokinetic dose-proportionality was established over the 300 mg to 600 mg dose range in nine healthy adult volunteers (crossover design) and in 16 early symptomatic human immunodeficiency virus (HIV)-positive patients over a 300 mg to 900 mg dose range.

Distribution

Due to its high lipophilicity, rifabutin demonstrates a high propensity for distribution and intracellular tissue uptake. Following intravenous dosing, estimates of apparent steady-state distribution volume (9.3 ± 1.5 L/kg) in five HIV-positive patients exceeded total body water by approximately 15-fold. Substantially higher intracellular tissue levels than those seen in plasma have been observed in both rat and man. The lung-to-plasma concentration ratio, obtained at 12 hours, was approximately 6.5 in four surgical patients who received an oral dose. Mean rifabutin steady-state trough levels (Cp, min ss ; 24-hour post-dose) ranged from 50 to 65 ng/mL in HIV-positive patients and in healthy adult volunteers. About 85% of the drug is bound in a concentration-independent manner to plasma proteins over a concentration range of 0.05 to 1 mcg/mL. Binding does not appear to be influenced by renal or hepatic dysfunction. Rifabutin was slowly eliminated from plasma in seven healthy adult volunteers, presumably because of distribution-limited elimination, with a mean terminal half-life of 45 (± 17) hours (range: 16 to 69 hours). Although the systemic levels of rifabutin following multiple dosing decreased by 38%, its terminal half-life remained unchanged.

Metabolism

Of the five metabolites that have been identified, 25-O-desacetyl and 31-hydroxy are the most predominant, and show a plasma metabolite:parent area under the curve ratio of 0.10 and 0.07, respectively. The former has an activity equal to the parent drug and contributes up to 10% to the total antimicrobial activity.

Excretion

A mass-balance study in three healthy adult volunteers with 14 C-labeled rifabutin showed that 53% of the oral dose was excreted in the urine, primarily as metabolites. About 30% of the dose is excreted in the feces. Mean systemic clearance (CLs /F) in healthy adult volunteers following a single oral dose was 0.69 (± 0.32) L/hr/kg (range: 0.46 to 1.34 L/hr/kg). Renal and biliary clearance of unchanged drug each contribute approximately 5% to CLs /F.

Pharmacokinetics in Special Populations

Geriatric

Compared to healthy volunteers, steady-state kinetics of rifabutin are more variable in elderly patients (>70 years).

Pediatric

The pharmacokinetics of rifabutin have not been studied in subjects under 18 years of age.

Renal Impairment

The disposition of rifabutin (300 mg) was studied in 18 patients with varying degrees of renal function. Area under plasma concentration time curve (AUC) increased by about 71% in patients with severe renal impairment (creatinine clearance below 30 mL/min) compared to patients with creatinine clearance (Crcl ) between 61 to 74 mL/min. In patients with mild to moderate renal impairment (Crcl between 30 to 61 mL/min), the AUC increased by about 41%. In patients with severe renal impairment, carefully monitor for rifabutin associated adverse events. A reduction in the dosage of rifabutin is recommended for patients with Crcl <30 mL/min if toxicity is suspected (see Dosage and Administration).

Hepatic Impairment

Mild hepatic impairment does not require a dose modification. The pharmacokinetics of rifabutin in patients with moderate and severe hepatic impairment is not known.

Malabsorption in HIV-Infected Patients

Alterations in gastric pH due to progressing HIV disease has been linked with malabsorption of some drugs used in HIV-positive patients (e.g., rifampin, isoniazid). Drug serum concentrations data from AIDS patients with varying disease severity (based on CD4+ counts) suggests that rifabutin absorption is not influenced by progressing HIV disease.

Drug-Drug Interactions (see also PrecautionsDrug Interactions)

Multiple dosing of rifabutin has been associated with induction of hepatic metabolic enzymes of the CYP3A subfamily. Rifabutin’s predominant metabolite (25-desacetyl rifabutin: LM565), may also contribute to this effect. Metabolic induction due to rifabutin is likely to produce a decrease in plasma concentrations of concomitantly administered drugs that are primarily metabolized by the CYP3A enzymes. Similarly concomitant medications that competitively inhibit the CYP3A activity may increase plasma concentrations of rifabutin.

CLINICAL STUDIES

Two randomized, double-blind clinical trials (Study 023 and Study 027) compared rifabutin (300 mg/day) to placebo in patients with CDC-defined AIDS and CD4 counts ≤200 cells/µL. These studies accrued patients from 2/90 through 2/92. Study 023 enrolled 590 patients, with a median CD4 cell count at study entry of 42 cells/µL (mean 61). Study 027 enrolled 556 patients with a median CD4 cell count at study entry of 40 cells/µL (mean 58).

Endpoints included the following:

(1) MAC bacteremia, defined as at least one blood culture positive for Mycobacterium avium complex (MAC) bacteria.

(2) Clinically significant disseminated MAC disease, defined as MAC bacteremia accompanied by signs or symptoms of serious MAC infection, including one or more of the following: fever, night sweats, rigors, weight loss, worsening anemia, and/or elevations in alkaline phosphatase.

(3) Survival.

MAC Bacteremia

Participants who received rifabutin were one-third to one-half as likely to develop MAC bacteremia as were participants who received placebo. These results were statistically significant (Study 023: p<0.001; Study 027: p = 0.002).

In Study 023, the one-year cumulative incidence of MAC bacteremia, on an intent to treat basis, was 9% for patients randomized to rifabutin and 22% for patients randomized to placebo. In Study 027, these rates were 13% and 28% for patients receiving rifabutin and placebo, respectively.

Most cases of MAC bacteremia (approximately 90% in these studies) occurred among participants whose CD4 count at study entry was ≤100 cells/µL. The median and mean CD4 counts at onset of MAC bacteremia were 13 cells/µL and 24 cells/µL, respectively. These studies did not investigate the optimal time to begin MAC prophylaxis.

Clinically Significant Disseminated MAC Disease

In association with the decreased incidence of bacteremia, patients on rifabutin showed reductions in the signs and symptoms of disseminated MAC disease, including fever, night sweats, weight loss, fatigue, abdominal pain, anemia, and hepatic dysfunction.

Survival

The one-year survival rates in Study 023 were 77% for the group receiving rifabutin and 77% for the placebo group. In Study 027, the one-year survival rates were 77% for the group receiving rifabutin and 70% for the placebo group.

These differences were not statistically significant.

Microbiology

Mechanism of Action

Rifabutin inhibits DNA-dependent RNA polymerase in susceptible strains of Escherichia coli and Bacillus subtilis but not in mammalian cells. In resistant strains of E. coli , rifabutin, like rifampin, did not inhibit this enzyme. It is not known whether rifabutin inhibits DNA-dependent RNA polymerase in Mycobacterium avium or in M. intracellulare which comprise M. avium complex (MAC).

Susceptibility Testing

For specific information regarding susceptibility test interpretive criteria and associated test methods and quality control standards recognized by FDA for this drug, please see: https://www.fda.gov/STIC.

INDICATIONS AND USAGE

Rifabutin capsules USP are indicated for the prevention of disseminated Mycobacterium avium complex (MAC) disease in patients with advanced HIV infection.

CONTRAINDICATIONS

Rifabutin capsules are contraindicated in patients who have had clinically significant hypersensitivity to rifabutin or to any other rifamycins.

WARNINGS

Tuberculosis

Rifabutin capsules must not be administered for MAC prophylaxis to patients with active tuberculosis. Patients who develop complaints consistent with active tuberculosis while on prophylaxis with rifabutin should be evaluated immediately, so that those with active disease may be given an effective combination regimen of anti-tuberculosis medications. Administration of rifabutin as a single agent to patients with active tuberculosis is likely to lead to the development of tuberculosis that is resistant both to rifabutin and to rifampin.

There is no evidence that rifabutin is an effective prophylaxis against M. tuberculosis. Patients requiring prophylaxis against both M. tuberculosis and Mycobacterium avium complex may be given isoniazid and rifabutin concurrently.

Tuberculosis in HIV-positive patients is common and may present with atypical or extrapulmonary findings. Patients are likely to have a nonreactive purified protein derivative (PPD) despite active disease. In addition to chest X-ray and sputum culture, the following studies may be useful in the diagnosis of tuberculosis in the HIV-positive patient: blood culture, urine culture, or biopsy of a suspicious lymph node.

MAC Treatment with Clarithromycin

When rifabutin is used concomitantly with clarithromycin for MAC treatment, a decreased dose of rifabutin is recommended due to the increase in plasma concentrations of rifabutin (see PrecautionsDrug Interactions, Table 2).

Hypersensitivity and Related Reactions

Hypersensitivity reactions may occur in patients receiving rifamycins. Signs and symptoms of these reactions may include hypotension, urticaria, angioedema, acute bronchospasm, conjunctivitis, thrombocytopenia, neutropenia or flu-like syndrome (weakness, fatigue, muscle pain, nausea, vomiting, headache, fever, chills, aches, rash, itching, sweats, dizziness, shortness of breath, chest pain, cough, syncope, palpitations). There have been reports of anaphylaxis with the use of rifamycins.

Monitor patients receiving rifabutin therapy for signs and/or symptoms of hypersensitivity reactions. If these symptoms occur, administer supportive measures and discontinue rifabutin.

Uveitis

Due to the possible occurrence of uveitis, patients should also be carefully monitored when rifabutin is given in combination with clarithromycin (or other macrolides) and/or fluconazole and related compounds (see PrecautionsDrug Interactions, Table 2). If uveitis is suspected, the patient should be referred to an ophthalmologist and, if considered necessary, treatment with rifabutin should be suspended (see also Adverse Reactions).

Clostridioides difficile Associated Diarrhea

Clostridioides difficile associated diarrhea (CDAD) has been reported with use of nearly all antibacterial agents, including rifabutin capsules, and may range in severity from mild diarrhea to fatal colitis. Treatment with antibacterial agents alters the normal flora of the colon leading to overgrowth of C. difficile.

C. difficile produces toxins A and B which contribute to the development of CDAD. Hypertoxin producing strains of C. difficile cause increased morbidity and mortality, as these infections can be refractory to antimicrobial therapy and may require colectomy. CDAD must be considered in all patients who present with diarrhea following antibacterial use. Careful medical history is necessary since CDAD has been reported to occur over two months after the administration of antibacterial agents.

If CDAD is suspected or confirmed, ongoing antibacterial use not directed against C. difficile may need to be discontinued. Appropriate fluid and electrolyte management, protein supplementation, antibacterial treatment of C. difficile , and surgical evaluation should be instituted as clinically indicated.

Severe Cutaneous Adverse Reactions

There have been reports of severe cutaneous adverse reactions (SCAR), such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), and acute generalized exanthematous pustulosis (AGEP) associated with rifabutin (see ADVERSE REACTIONS).

If patients develop a skin rash they should be monitored closely, and rifabutin discontinued if lesions progress. Specifically, for DRESS, a multi-system potential life-threatening SCAR, time to onset of the first symptoms may be prolonged. DRESS is a clinical diagnosis, and its clinical presentation remains the basis for decision making. An early withdrawal of rifabutin is essential because of the syndrome’s mortality and visceral involvement (e.g., liver, bone marrow or kidney).

Protease Inhibitor Drug Interaction

Protease inhibitors act as substrates or inhibitors of CYP3A4 mediated metabolism. Therefore, due to significant drug-drug interactions between protease inhibitors and rifabutin, their concomitant use should be based on the overall assessment of the patient and a patient-specific drug profile. The concomitant use of protease inhibitors may require at least a 50% reduction in rifabutin dose, and depending on the protease inhibitor, an adjustment of the antiviral drug dose. Increased monitoring for adverse events is recommended when using these drug combinations (see PrecautionsDrug Interactions). For further recommendations, please refer to current, official product monographs of the protease inhibitor or contact the specific manufacturer.

Page 1 of 4 1 2 3 4

RxDrugLabels.com provides trustworthy package insert and label information about marketed prescription drugs as submitted by manufacturers to the U.S. Food and Drug Administration. Package information is not reviewed or updated separately by RxDrugLabels.com. Every individual prescription drug label and package insert entry contains a unique identifier which can be used to secure further details directly from the U.S. National Institutes of Health and/or the FDA.

Medication Sections

Medication Information by RSS

As a leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. RxDrugLabels.com provides the full prescription-only subset of the FDA's repository. Medication information provided here is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2021. All Rights Reserved.