Prescription Drug Information: Succinylcholine Chloride

SUCCINYLCHOLINE CHLORIDE — succinylcholine chloride injection
Indoco Remedies Limited

A short-acting depolarizing skeletal muscle relaxant.

WARNING


WARNING RISK OF CARDIAC ARREST FROM HYPERKALEMIC RHABDOMYOLYSIS

There have been rare reports of acute rhabdomyolysis with hyperkalemia followed by ventricular dysrhythmias, cardiac arrest and death after the administration of succinylcholine to apparently healthy pediatric patients who were subsequently found to have undiagnosed skeletal muscle myopathy, most frequently Duchenne’s muscular dystrophy.
This syndrome often presents as peaked T-waves and sudden cardiac arrest within minutes after the administration of the drug in healthy appearing pediatric patients (usually, but not exclusively, males, and most frequently 8 years of age or younger). There have also been reports in adolescents.
Therefore, when a healthy appearing infant or child develops cardiac arrest soon after administration of succinylcholine, not felt to be due to inadequate ventilation, oxygenation or anesthetic overdose, immediate treatment for hyperkalemia should be instituted. This should include administration of intravenous calcium, bicarbonate, and glucose with insulin, with hyperventilation. Due to the abrupt onset of this syndrome, routine resuscitative measures are likely to be unsuccessful. However, extraordinary and prolonged resuscitative efforts have resulted in successful resuscitation in some reported cases. In addition, in the presence of signs of malignant hyperthermia, appropriate treatment should be instituted concurrently.
Since there may be no signs or symptoms to alert the practitioner to which patients are at risk, it is recommended that the use of succinylcholine in pediatric patients should be reserved for emergency intubation or instances where immediate securing of the airway is necessary, e.g., laryngospasm, difficult airway, full stomach, or for intramuscular use when a suitable vein is inaccessible (see PRECAUTIONS: Pediatric Use and DOSAGE AND ADMINISTRATION).

This drug should be used only by individuals familiar with its actions, characteristics and hazards.

DESCRIPTION

Succinylcholine Chloride Injection, USP is a sterile, nonpyrogenic solution to be used as an ultra short-acting, depolarizing, skeletal muscle relaxant See HOW SUPPLIEDfor summary of content and characteristics of the solutions. The solutions are for intramuscular (IM) or intravenous (IV) use.
Succinylcholine Chloride, USP is chemically designated C14 H30 Cl2 N2 O4 and its molecular weight is 361.31. It has the following structural formula:

str
(click image for full-size original)

Succinylcholine is a diquaternary base consisting of the dichloride salt of the dicholine ester of succinic acid. It is a white, odorless, slightly bitter powder, very soluble in water. The drug is incompatible with alkaline solutions but relatively stable in acid solutions. Solutions of the drug lose potency unless refrigerated.
Solution is intended for multiple-dose administration and contains 0.18% Methylparaben and 0.02% Propylparaben as preservatives, contains sodium chloride to render isotonic. May contain sodium hydroxide and/or hydrochloric acid for pH adjustment. pH is 3.6 (3.0 to 4.5). See table in HOW SUPPLIEDfor characteristics.
Sodium Chloride, USP, chemically designated NaCl, is a white crystalline compound freely soluble in water.

CLINICAL PHARMACOLOGY

Succinylcholine is a depolarizing skeletal muscle relaxant. As does acetylcholine, it combines with the cholinergic receptors of the motor end plate to produce depolarization. This depolarization may be observed as fasciculations. Subsequent neuromuscular transmission is inhibited so long as adequate concentration of succinylcholine remains at the receptor site. Onset of flaccid paralysis is rapid (less than one minute after intravenous administration), and with single administration lasts approximately 4 to 6 minutes.
Succinylcholine is rapidly hydrolyzed by plasma cholinesterase to succinylmonocholine (which possesses clinically insignificant depolarizing muscle relaxant properties) and then more slowly to succinic acid and choline (see PRECAUTIONS). About 10% of the drug is excreted unchanged in the urine. Succinylcholine levels were reported to be below the detection limit of 2 mcg/mL after 2.5 minutes of an IV bolus dose of 1 or 2 mg/kg in fourteen (14) anesthetized patients. The paralysis following administration of succinylcholine is progressive, with differing sensitivities of different muscles. This initially involves consecutively the levator muscles of the face, muscles of the glottis and finally the intercostals and the diaphragm and all other skeletal muscles.
Succinylcholine has no direct action on the uterus or other smooth muscle structures. Because it is highly ionized and has low fat solubility, it does not readily cross the placenta.
Tachyphylaxis occurs with repeated administration (see PRECAUTIONS).
Depending on the dose and duration of succinylcholine administration, the characteristic depolarizing neuromuscular block (Phase I block) may change to a block with characteristics superficially resembling a non-depolarizing block (Phase II block). This may be associated with prolonged respiratory muscle paralysis or weakness in patients who manifest the transition to Phase II block. When this diagnosis is confirmed by peripheral nerve stimulation, it may sometimes be reversed with anticholinesterase drugs such as neostigmine (see PRECAUTIONS). Anticholinesterase drugs may not always be effective. If given before succinylcholine is metabolized by cholinesterase, anticholinesterase drugs may prolong rather than shorten paralysis.
Succinylcholine has no direct effect on the myocardium. Succinylcholine stimulates both autonomic ganglia and muscarinic receptors which may cause changes in cardiac rhythm, including cardiac arrest. Changes in rhythm, including cardiac arrest, may also result from vagal stimulation, which may occur during surgical procedures, or from hyperkalemia, particularly in pediatric patients (see

PRECAUTIONS : Pediatric Use). These effects are enhanced by halogenated anesthetics.
Succinylcholine causes an increase in intraocular pressure immediately after its injection and during the fasciculation phase, and slight increases which may persist after onset of complete paralysis (see WARNINGS).
Succinylcholine may cause slight increases in intracranial pressure immediately after its injection and during the fasciculation phase (see PRECAUTIONS)
As with other neuromuscular blocking agents, the potential for releasing histamine is present following succinylcholine administration. Signs and symptoms of histamine mediated release such as flushing, hypotension and bronchoconstriction are, however, uncommon in normal clinical usage.diately after its injection and during the fasciculation phase (see PRECAUTIONS).
Succinylcholine has no effect on consciousness, pain threshold or cerebration. It should be used only with adequate anesthesia (see WARNINGS).

INDICATIONS & USAGE

Succinylcholine chloride is indicated as an adjunct to general anesthesia, to facilitate tracheal intubation, and to provide skeletal muscle relaxation during surgery or mechanical ventilation.

CONTRAINDICATIONS

Succinylcholine is contraindicated in persons with personal or familial history of malignant hyperthermia, skeletal muscle myopathies and known hypersensitivity to the drug. It is also contraindicated in patients after the acute phase of injury following major burns, multiple trauma, extensive denervation of skeletal muscle, or upper motor neuron injury, because succinylcholine administered to such individuals may result in severe hyperkalemia which may result in cardiac arrest (see WARNINGS). The risk of hyperkalemia in these patients increases over time and usually peaks at 7 to 10 days after the injury. The risk is dependent on the extent and location of the injury. The precise time of onset and the duration of the risk period are not known.

WARNINGS

Succinylcholine should be used only by those skilled in the management of artificial respiration and only when facilities are instantly available for tracheal intubation and for providing adequate ventilation of the patient, including the administration of oxygen under positive pressure and the elimination of carbon dioxide. The clinician must be prepared to assist or control respiration.
To avoid distress to the patient, succinylcholine should not be administered before unconsciousness has been induced. In emergency situations, however, it may be necessary to administer succinylcholine before unconsciousness is induced.
Succinylcholine is metabolized by plasma cholinesterase and should be used with caution, if at all, in patients known to be or suspected of being homozygous for the atypical plasma cholinesterase gene.
Anaphylaxis
Severe anaphylactic reactions to neuromuscular blocking agents, including succinylcholine, have been reported. These reactions have, in some cases, been life-threatening and fatal. Due to the potential severity of these reactions, the necessary precautions, such as the immediate availability of appropriate emergency treatment, should be taken. Precautions should also be taken in those individuals who have had previous anaphylactic reactions to other neuromuscular blocking agents since cross-reactivity between neuromuscular blocking agents, both depolarizing and non-depolarizing, has been reported in this class of drugs.
Risk of Death due to Medication Errors
Administration of Succinylcholine Chloride Injection, USP results in paralysis, which may lead to respiratory arrest and death; this progression may be more likely to occur in a patient for whom it is not intended. Confirm proper selection of intended product and avoid confusion with other injectable solutions that are present in critical care and other clinical settings. If another healthcare provider is administering the product, ensure that the intended dose is clearly labeled and communicated.
Hyperkalemia
(see BOX WARNING) Succinylcholine should be administered with GREAT CAUTION to patients suffering from electrolyte abnormalities and those who may have massive digitalis toxicity, because in these circumstances succinylcholine may induce serious cardiac arrhythmias or cardiac arrest due to hyperkalemia.
GREAT CAUTION should be observed if succinylcholine is administered to patients during the acute phase of injury following major burns, multiple trauma, extensive denervation of skeletal muscle, or upper motor neuron injury (see CONTRAINDICATIONS). The risk of hyperkalemia in these patients increases over time and usually peaks at 7 to 10 days after the injury. The risk is dependent on the extent and location of the injury. The precise time of onset and the duration of the risk period are undetermined. Patients with chronic abdominal infection, subarachnoid hemorrhage, or conditions causing degeneration of central and peripheral nervous systems should receive succinylcholine with GREAT CAUTION because of the potential for developing severe hyperkalemia.
Malignant Hyperthermia
Succinylcholine administration has been associated with acute onset of malignant hyperthermia, a potentially fatal hypermetabolic state of skeletal muscle. The risk of developing malignant hyperthermia following succinylcholine administration increases with the concomitant administration of volatile anesthetics. Malignant hyperthermia frequently presents as intractable spasm of the jaw muscles (masseter spasm) which may progress to generalized rigidity, increased oxygen demand, tachycardia, tachypnea and profound hyperpyrexia. Successful outcome depends on recognition of early signs, such as jaw muscle spasm, acidosis, or generalized rigidity to initial administration of succinylcholine for tracheal intubation, or failure of tachycardia to respond to deepening anesthesia. Skin mottling, rising temperature and coagulopathies may occur later in the course of the hypermetabolic process. Recognition of the syndrome is a signal for discontinuance of anesthesia, attention to increased oxygen consumption, correction of acidosis, support of circulation, assurance of adequate urinary output and institution of measures to control rising temperature. Intravenous dantrolene sodium is recommended as an adjunct to supportive measures in the management of this problem. Consult literature references and the dantrolene prescribing information for additional information about the management of malignant hyperthermic crisis. Continuous monitoring of temperature and expired CO2 is recommended as an aid to early recognition of malignant hyperthermia.
Other
In both adults and pediatric patients the incidence of bradycardia, which may progress to asystole, is higher following a second dose of succinylcholine. The incidence and severity of bradycardia is higher in pediatric patients than adults. Whereas bradycardia is common in pediatric patients after an initial dose of 1.5 mg/kg, bradycardia is seen in adults only after repeated exposure. Pretreatment with anticholinergic agents (e.g., atropine) may reduce the occurrence of bradyarrhythmias.
Succinylcholine causes an increase in intraocular pressure. It should not be used in instances in which an increase in intraocular pressure is undesirable (e.g., narrow angle glaucoma, penetrating eye injury) unless the potential benefit of its use outweighs the potential risk.Succinylcholine is acidic (pH = 3.5) and should not be mixed with alkaline solutions having a pH greater than 8.5 (e.g., barbiturate solutions).

Page 1 of 3 1 2 3

RxDrugLabels.com provides trustworthy package insert and label information about marketed prescription drugs as submitted by manufacturers to the U.S. Food and Drug Administration. Package information is not reviewed or updated separately by RxDrugLabels.com. Every individual prescription drug label and package insert entry contains a unique identifier which can be used to secure further details directly from the U.S. National Institutes of Health and/or the FDA.

As a leading independent provider of trustworthy medication information, we source our database directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. RxDrugLabels.com provides the full prescription-only subset of the FDA's repository. Medication information provided here is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2024. All Rights Reserved.